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We derive an analytical bound on the resolvent of pipe Poiseuille flow in large parts of
the unstable half-plane. We also consider the linearized equations, Fourier transformed
in axial and azimuthal directions. For certain combinations of the wavenumbers and
the Reynolds number, we derive an analytical bound on the resolvent of the Fourier
transformed problem. In particular, this bound is valid for the perturbation which
numerical computations indicate to be the perturbation that gives the largest transient
growth. Our bound has the same dependence on the Reynolds number as given by
the computations.

1. Introduction
Since the pioneer work on pipe flow by Reynolds in the late nineteenth century,

hydrodynamical stability theory has experienced great advances. However, some of the
most fundamental questions remain unanswered, such as the mechanisms responsible
for transition to turbulence. Even in the few simple cases of shear flows where
the analytical solutions of the Navier–Stokes equations are available, much is still
unknown. It has been shown that plane Couette flow is linearly stable at all Reynolds
numbers (Romanov 1973) and that plane Poiseuille flow becomes linearly unstable at
R ≈ 5772 (Orszag 1971). For pipe Poiseuille flow, laminar flow has been observed at
R ≈ 105 in highly controlled experiments (Pfenninger 1961) indicating that the flow
is linearly stable. Also, numerous numerical computations have been done (see e.g.
Lessen, Sadler & Liu 1968; Salwen, Cotton & Grosch 1980; Schmid & Henningson
1994; Trefethen, Trefethen & Schmid 1999) without finding any unstable eigenvalues
of the Navier–Stokes equations linearized at the stationary parabolic velocity profile
of pipe Poiseuille flow. However, a formal proof of linear stability exists only for
axisymmetric disturbances (Herron 1991). Hence, despite the long history of the
problem, the question of linear stability of pipe Poiseuille flow remains an open
problem.

Even more complicated and unresolved is the question of conditional nonlinear
stability of pipe Poiseuille flow. Despite the believed linear stability at all Reynolds
numbers, experiments have shown that finite-amplitude perturbations may lead to
turbulence at Reynolds numbers larger than the critical Reynolds number Rc ≈ 2000
(see Draad, Kuiken & Nieuwstadt 1998, and references therein). There is a threshold
for the amplitude of the perturbation, below which the flow is stable to all
perturbations. This threshold is assumed to behave as R−β , with β � 1, as R → ∞
(Trefethen et al. 1993). Determining the correct value of β has proved to be a challenge.
Experiments and computations have indicated values in the range 1 � β � 3/2 (see
e.g. Hof, Juel & Mullin 2003; Meseguer 2003; Shan, Zhang & Nieuwstadt 1998).
By careful asymptotic analysis, Chapman (2002) argues that β = 1 and β = 3/2 for
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plane Couette flow and plane Poiseuille flow, respectively. In work not yet published,
discussed by e.g. Meseguer & Trefethen (2003), Chapman uses the same technique for
pipe Poiseuille flow, with β = 1 as the resulting asymptotic exponent.

In the last decade, much attention has been devoted to linear transient growth
as a possible mechanism for transition to turbulence in shear flows (see e.g. Reddy
& Henningson 1993; Trefethen et al. 1993, and references therein). This transient
growth is due to the non-normality of the operator of the linearized Navier–Stokes
equations. More importantly, the operator is increasingly non-normal with increasing
Reynolds number. Hence, a small perturbation can exhibit severe short-time growth,
owing to linear mechanisms, thus triggering nonlinear effects which lead to turbulence.
The transient growth cannot be captured by considering the eigenvalues, since they
predict only the exponential decay which eventually follows. More information can
be obtained by considering the ε-pseudospectrum or the resolvent.

The ε-pseudospectrum is a generalization of the spectrum. For a linear operator, L,
the ε-pseudospectrum is the set of complex numbers, s, such that ‖(sI − L)−1‖ � ε−1.
Clearly, all eigenvalues are in the ε-pseudospectrum for any value of ε. If the operator
is highly non-normal, the ε-pseudospectrum will include large areas around each
eigenvalue for small values of ε. This is an indication that the eigenvalues probably
give poor information about the short-time behaviour. Also, the ε-pseudospectrum
can be used to derive a lower bound on the transient growth (Trefethen et al. 1993).
Numerical computations of the ε-pseudospectrum for pipe Poiseuille flow have been
done by Trefethen et al. (1999) and Meseguer & Trefethen (2003).

The term R(s) = (sI − L)−1 in the definition of the ε-pseudospectrum is known
as the resolvent of L. Hence, the resolvent is the solution operator of the Laplace
transformed initial-value problem ut = Lu. Deriving a bound on the norm of the
resolvent in the entire unstable half-plane implies linear stability of the initial-
value problem. Also, this bound includes the effects of transient growth and it
can also be used for proving conditional nonlinear stability. This was done by
Kreiss, Lundbladh & Henningson (1994) who, assuming the bound ‖R(s)‖ � CRρ

in the entire unstable half-plane Re(s) � 0, proved nonlinear stability of shear flows
for perturbations with amplitudes smaller than C̃R−2ρ−5/4. This serves as the only
proof of an upper bound on β in the threshold for nonlinear stability of shear
flows.

Here, we consider the resolvent of pipe Poiseuille flow. Computations by Meseguer
& Trefethen (2003) indicate that the L2-norm of the resolvent is maximized at s = 0
and depends on the Reynolds number as ‖R(0)‖ ∼ R2. A proof of this bound in the
entire unstable half-plane would, besides proving linear stability, make the nonlinear
stability result mentioned above directly applicable.

The first result in this paper is a bound on the L2-norm of the resolvent, obtained
from the Laplace transformed and linearized Navier–Stokes equations, in large parts
of the unstable half-plane. However, the size of the remaining part grows with R, and
the bound is not valid at the point s =0. In order to obtain a bound in the remaining
part of the unstable half-plane, we consider the equations in both Cartesian and
cylindrical coordinates. When using cylindrical coordinates, there is a well-known
reformulation of the equations involving the radial velocity and the radial vorticity.
The advantage of this formulation is that the number of unknowns reduces to
two. The equations are homogeneous in the axial and azimuthal directions. Hence,
Fourier transformation can be used in these directions, with dual variables α and
n, respectively. The norm of the resolvent of the original problem can be obtained
by maximizing the norm of the resolvent of the Fourier transformed problem with
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respect to the wavenumbers. Numerical computations indicate that this maximum
occurs when α =0 and n= 1 (Trefethen et al. 1999).

The second result of this paper is an analytical bound on the resolvent for certain
combinations of the wavenumbers and the Reynolds number. The bound is valid in
the entire unstable half-plane. In particular, the bound is valid for α = 0 and n= 1, i.e.
when the resolvent is believed to be maximized. Our analytical bound has the same
R dependence as computations have indicated, i.e. the L2-norm is proportional to R2.

This paper is a step towards proving the linear stability of pipe Poiseuille flow. In
the case of plane Couette flow, a similar strategy has proved successful. Liefvendahl
& Kreiss (2003) derived results for plane Couette flow which are similar to the results
in this paper. A resolvent bound for a different combination of the wavenumbers
and the Reynolds number has been proved for s = 0 by Åsén & Kreiss (2005). In
the remaining bounded parameter domain, numerical computations, which could be
made rigorous by using interval arithmetic, yield a resolvent bound (Åsén 2005).
Together, the computed and the analytical results prove a resolvent bound for s = 0.

The paper is organized as follows. In § 2, we state the problem and introduce
some notation. A resolvent bound in large parts of the unstable half-plane is derived
in § 3. In § 4, we derive bounds for certain combinations of the wavenumbers and
the Reynolds number. This is done by considering the equations in both Cartesian
and cylindrical coordinates. We also show that the resolvent of the original problem
can be obtained by maximizing the resolvent of the Fourier transformed problem
with respect to the wavenumbers. We discuss the relation between the norm of the
resolvent and transient growth of energy in § 5. In § 6, we discuss what further results
are required in order to obtain a bound on the resolvent in the entire unstable
half-plane. Finally, we present our conclusions in § 7.

2. The problem
We chose the (Cartesian) coordinate system such that x is the streamwise direction

and the pipe radius is one, i.e. the domain is given by

D = {(x, y, z) ∈ �3 : y2 + z2 � 1}. (2.1)

The (normalized) stationary solution of pipe Poiseuille flow is then given by

U =

⎛
⎝U

0
0

⎞
⎠ =

⎛
⎝1 − y2 − z2

0
0

⎞
⎠ . (2.2)

In Cartesian coordinates, we use the notation

u = (u, v, w)T = uex + vey + wez

for the perturbation, where ex , ey and ez are the unit vectors in the x, y and z

directions, respectively. Linearizing the Navier–Stokes equations at the stationary
solution (2.2) and applying the Laplace transform gives

su + Uux −

⎛
⎝2yv + 2zw

0
0

⎞
⎠ + ∇p =

1

R
�u + f , (2.3a)

∇ · u = 0, (2.3b)

u = 0, (x, y, z) ∈ Γ. (2.3c)
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Here, R = Uca/ν is the Reynolds number, where Uc is the centreline velocity, a the
pipe radius and ν the kinematic viscosity, and Γ = {(x, y, z) ∈ �3 : y2 + z2 = 1} is the
boundary of D.

The resolvent, R(s), is the solution operator of (2.3a–c) for a given forcing f , i.e.
R(s) : f → u. We are interested in bounding the L2-norm of the resolvent in the
unstable half-plane, Re(s) � 0. In particular, we are interested in how the norm of the
resolvent depends on the Reynolds number.

We assume that u ∈ L2 is a smooth solution, i.e. u → 0 as |x| → ∞, so that boundary
terms vanish when using integration by parts. Without any restriction, we assume
∇ · f = 0 and f ∈ C∞

0 . A non-solenoidal forcing can be divided into a solenoidal part
and a part affecting only the pressure (Yudovich 1989). Results for less regular forcing
follow from closure arguments. Also, since we are interested in the linear stability for
large Reynolds numbers, we consider only R � 1.

We will derive bounds on the resolvent in large parts of the unstable half-plane
using the formulation (2.3a–c) and integration by parts. However, in other parts of
the unstable half-plane, this is not possible, at least not in a straightforward way. In
those parts, we will derive bounds for some combinations of wavenumbers and the
Reynolds number. The geometry of the domain suggests that cylindrical coordinates
might be useful, and we will return to this later in the paper.

We use 〈u, v〉 and ‖u‖ = 〈u, u〉1/2 to denote the L2-inner product and L2-norm,
respectively. In Cartesian coordinates, the L2-inner product is defined as

〈u, v〉 =

∫
D

u · v dx.

As mentioned above, we also use cylindrical coordinates. To avoid confusion, we
introduce the corresponding equations and notation later.

3. A resolvent bound in parts of the unstable half-plane
In order to obtain a bound on the resolvent in large parts of the unstable half-plane,

we consider the linearized Navier–Stokes equations in Cartesian coordinates, (2.3a–c).
First, we define the following parts of the complex plane (see figure 1).

Σ =

{
s ∈ � : Re(s) − 7 +

1

2R
|Im(s)| � 0

}
, (3.1a)

Σ− = {s /∈ Σ : Re(s) � 0}. (3.1b)

We can derive a bound on the resolvent using only integration by parts. The result
is summarized in the following theorem.

Theorem 3.1. If s ∈ Σ , where Σ is defined by (3.1a), then the resolvent is bounded
by

‖R(s)‖ � CR,

where C is a constant independent of R. Also, for s ∈ Σ we have ‖R(s)‖ → 0 as |s| → ∞.

Proof. Scalar multiply (2.3a) with u. For the term involving the pressure, we have
by using integration by parts, (2.3b) and (2.3c) so that

〈u, ∇p〉 = −〈∇ · u, p〉 = 0.
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Im (s)

Re (s)

Σ

Σ
–

14R

–14R

Figure 1. The L2-norm of the resolvent of pipe Poiseuille flow is bounded by ‖R(s)‖ � CR
when s ∈ Σ . Also, the resolvent tends to zero as |s| → ∞ when s ∈ Σ .

Using the triangle inequality and a + b �
√

2
√

a2 + b2 yields

2|〈u, yv + zw〉| � 2‖u‖ ‖yv + zw‖ � 2‖u‖(‖v‖ + ‖w‖) � 2‖u‖
√

2‖u‖ < 3‖u‖2

and, since U is real and independent of x, we also have

〈u, Uux〉 = −〈ux, Uu〉 = −〈u, Uux〉 ⇒ 〈u, Uux〉 ∈ Im.

Hence, using integration by parts and taking the real part gives

(Re(s) − 3)‖u‖2 +
1

R
(‖ux‖2 + ‖uy‖2 + ‖uz‖2) � ‖u‖ ‖ f ‖. (3.2)

Similarly, using integration by parts, taking the imaginary part and using |〈u, Uux〉| �
‖u‖2/4 + ‖ux‖2 gives (

|Im(s)| − 1
4

− 3
)
‖u‖2 − ‖ux‖2 � ‖u‖ ‖ f ‖. (3.3)

Dividing (3.3) by R, adding to (3.2) and dividing both sides by ‖u‖ yields(
Re(s) − 3 +

1

R
|Im(s)| − 13

4R

)
‖u‖ �

(
1 +

1

R

)
‖ f ‖.

Using R � 1, it follows that(
Re(s) +

1

R
|Im(s)| − 25

4

)
‖u‖ � 2‖ f ‖.

Hence, if s ∈ Σ , we have

‖u‖ �
4R

|Im(s)| ‖ f ‖. (3.4)
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We also have from (3.2) that

‖u‖ �
1

Re(s) − 3
‖ f ‖. (3.5)

Using either (3.4) or (3.5), depending on s, the result follows.

Remark. As seen from (3.5), it is enough that Re(s) > 3 (actually Re(s) > 2
√

2)
for the resolvent to be bounded. Hence, we could make the part of the unstable half-
plane where theorem 3.1 does not hold, i.e. Σ− defined by (3.1b), somewhat smaller
if desired. However, since Σ− grows as R increases, this is of minor interest. Also, the
estimate (3.5) gives an R-independent bound on the resolvent when Re(s) > 3.

In order to prove linear stability and also nonlinear stability for sufficiently small
perturbations, we wish to bound the resolvent in the entire unstable half-plane. The
rest of the paper is concerned with how a bound on the resolvent could also be
derived in the part of the unstable half-plane not covered by theorem 3.1.

4. Resolvent bounds for certain wavenumbers
Here, we consider the Fourier transformed linearized Navier–Stokes equations. We

derive resolvent bounds for certain combinations of wavenumbers in relation to the
Reynolds number.

First, we bound the resolvent when the wavenumber in the axial direction, α, is
sufficiently large compared to the Reynolds number. For this, we use the linearized
Navier–Stokes equations in Cartesian coordinates and Fourier transformed in the
axial direction.

Next, we derive a resolvent bound when the product of the axial wavenumber, α,
and the Reynolds number, R, is sufficiently small. In this case, we use the linearized
Navier–Stokes equations in cylindrical coordinates.

Finally, we bound the resolvent when the azimuthal wavenumber, n, is sufficiently
large compared to the product of the axial wavenumber, α, and the Reynolds number.
In this case, we use a well-known formulation involving the radial velocity and the
radial vorticity.

At the end of this section, we discuss the relation between the norm of the
resolvent to the original problem, (2.3a–c), and the norm of the resolvent to the
Fourier transformed problems.

4.1. Cartesian coordinates

Since the coefficients in (2.3a–c) are independent of x, we may apply the Fourier
transform, yielding

s û + iαU û −

⎛
⎝2yv̂ + 2zŵ

0
0

⎞
⎠ +

⎛
⎝iαp̂

p̂y

p̂z

⎞
⎠ =

1

R
�̂û + f̂ , (4.1a)

iαû + v̂y + ŵz = 0, (4.1b)

û = 0, (y, z) ∈ Γ. (4.1c)

Here, �̂ =(∂2
y + ∂2

z − α2) and the domain is D = {(y, z) ∈ �2 : y2 + z2 � 1} with

boundary Γ = {(y, z) ∈ �2 : y2 + z2 = 1}.
We define, in analogy with the original problem, R̂(s, α) to be the solution operator

of (4.1a–c) where α ∈ � is to be considered as another parameter, i.e. R̂(s, α) : f̂ → û.
Note that ‖ · ‖ now denotes the L2-norm over the two-dimensional unit disk.
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Using integration by parts, we obtain the following lemma.

Lemma 4.1. For all α and R such that

α2 � 4R,

the bound

‖R̂(s, α)‖ � 1 (4.2)

holds in the entire unstable half-plane Re(s) � 0. Also, ‖R̂(s, α)‖ → 0 as |α| → ∞.

Proof. As in the proof of theorem 3.1, scalar multiplying (4.1a) with û, using
integration by parts, (4.1b), (4.1c) and taking the real part gives

(Re(s) − 3)R‖û‖2 + ‖ûy‖2 + ‖ûz‖2 + α2‖û‖2 � R‖û‖ ‖ f̂ ‖ �
R

2
‖û‖2 +

R

2
‖ f̂ ‖2.

Rearranging the terms and using Re(s) � 0 yields

‖û‖2 �

(
α2 − 7R

2

)−1
R

2
‖ f̂ ‖2 (4.3)

and the lemma easily follows.

4.2. Cylindrical coordinates

Here, we derive bounds when the product of the wavenumber in the axial direction,
α, and the Reynolds number, R, is sufficiently small and when the wavenumber in
the azimuthal direction, n, is sufficiently large.

We use the notation

u = (u, v, w) = uex + ver + weθ

for the perturbation, where ex , er and eθ are the unit vectors in the x, r and θ

directions, respectively. The stationary solution is now given by

U =

⎛
⎝U

0
0

⎞
⎠ =

⎛
⎝1 − r2

0
0

⎞
⎠ .

In cylindrical coordinates, the coefficients in the linearized and Laplace transformed
Navier–Stokes equations depend only on r . Hence, we may apply the Fourier
transform in the x and θ directions, with dual variables α and n, respectively.
The resulting equations are

sũ + iαUũ − 2rṽ + iαp̃ = R−1�̃ũ + f̃ x, (4.4a)

sṽ + iαUṽ + p̃′ = R−1(�̃ṽ − r−2ṽ − 2inr−2w̃) + f̃ r , (4.4b)

sw̃ + iαUw̃ + r−1inp̃ = R−1(�̃w̃ + 2inr−2ṽ − r−2w̃) + f̃ θ , (4.4c)

iαũ + r−1(rṽ)′ + inr−1w̃ = 0, (4.4d)

ũ = 0, r = 1, (4.4e)

where the prime denotes differentiation with respect to r . Here, the forcing is
f̃ = (f̃ x, f̃ r , f̃ θ ), the domain is D = {r ∈ � : r ∈ [0, 1]} and the Laplacian is given by

�̃ =
1

r

∂

∂r

(
r

∂

∂r

)
− α2 − n2

r2
.
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We define R̃(s, α, n) to be the solution operator of (4.4a–e) with α and n as
parameters, i.e. R̃(s, α, n) : f̃ → ũ. Clearly, u is periodic in the azimuthal direction.
Hence, n only takes integer values, i.e. n ∈ �, and, as before, α ∈ �.

The only remaining space dimension is r , and since we use cylindrical coordinates,
the scalar product is given by

〈ũ, ṽ〉 =

∫ 1

0

ũ · ṽr dr. (4.5)

In this section, ‖ · ‖ denotes the norm induced by (4.5), i.e. over the one-dimensional
domain r ∈ [0, 1]. Using Parseval’s formula, this norm can be related to the L2-norm
over the unit disk and to the L2-norm over the entire three-dimensional domain (2.1).
This is discussed in § 4.3.

We first consider axisymmetric perturbations, i.e. n= 0, in which case we derive the
following lemma.

Lemma 4.2. When n= 0 and |αR| � 1/16, the bound

‖R̃(s, α, 0)‖ � CR

holds in the entire unstable half-plane, Re(s) � 0. Here, C is a constant independent of
α and R.

Proof. First, with the scalar product (4.5) we have by using (4.4d), (4.4e) and n= 0
that

〈ũ, iαp̃〉 + 〈ṽ, p̃′〉 = −〈iαũ + r−1(rṽ)′, p̃〉 = 0,

iα(〈ũ, Uũ〉 + 〈ṽ, Uṽ〉 + 〈w̃, Uw̃〉) ∈ Im.

Note that the boundary term from the integration by parts vanishes by using (4.4e)
at r = 1 and by using that ṽ, p̃ are bounded at r =0, i.e. ṽp̃r |r=0 = 0. In the rest of
this proof, we use (4.4e) and the fact that ũ and ũ′ are bounded at r = 0 in order to
remove boundary terms appearing when using integration by parts.

Now, scalar multiplying (4.4a) with ũ, (4.4b) with ṽ and (4.4c) with w̃, using
integration by parts, taking the real part and adding the resulting equations yields

(Re(Rs) + α2)‖ũ‖2 + ‖ũ′‖2 + ‖r−1ṽ‖2 + ‖r−1w̃‖2

� R‖ũ‖‖f̃ x‖ + R‖ṽ‖‖f̃ r‖ + R‖w̃‖‖f̃ θ‖ + |2R〈ũ, rṽ〉|
� 1

4
‖ũ‖2 + 2R2‖ f̃ ‖2 + |2R〈ũ, rṽ〉|. (4.6)

For the last term on the right-hand side, we required the inequality

|rũ|∞ � 2‖ũ‖ + ‖ũ′‖, (4.7)

where | · |∞ denotes the L∞−norm. In order to prove (4.7), note that since ũ is
continuous, there exist rm and rM such that

|rmũ(rm)| = min
r∈[0,1]

|rũ(r)| � ‖rũ‖ � ‖ũ‖, |rMũ(rM )| = max
r∈[0,1]

|rũ(r)| = |rũ|∞.

Now, (4.7) follows from

|rMũ(rM )|2 − |rmũ(rm)|2 =

∫ rM

rm

(r2ũ2)′ dr =

∫ rM

rm

2rũ2 + 2r2ũũ′ dr

� 2‖ũ‖2 + 2‖ũ‖‖ũ′‖ � 3‖ũ‖2 + ‖ũ′‖2

and (4‖ũ‖2 + ‖ũ′‖2)1/2 � 2‖ũ‖ + ‖ũ′‖.
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With n= 0 we have, from (4.4d), (rṽ)′ = − iαũr or rṽ = − iα
∫ r

0
ũs ds. Using this

and (4.7) yields

|2R〈ũ, rṽ〉| = 2R

∣∣∣∣
∫ 1

0

ũ

(
iα

∫ r

0

ũs ds

)
r dr

∣∣∣∣ � 2|αR||rũ|∞
∫ 1

0

|ũ|r2 dr

� 2|αR|(2‖ũ‖ + ‖ũ′‖)

(∫ 1

0

|ũ|2r dr

)1/2 (∫ 1

0

r3 dr

)1/2

= 2|αR|(2‖ũ‖ + ‖ũ′‖)‖ũ‖ 1
2

� |αR|
(
3‖ũ‖2 + 1

4
‖ũ′‖2

)
. (4.8)

We also need the Poincaré type inequality

‖ũ‖2 � 1
4
‖ũ′‖2. (4.9)

Consider one component of ũ, e.g. ũ. Using ũ= −
∫ 1

r
ũ′ds yields

‖ũ‖2 =

∫ 1

0

[∫ 1

r

ũ′ ds

]2

r dr �

∫ 1

0

[(∫ 1

r

|ũ′|2s ds

)1/2 (∫ 1

r

s−1 ds

)1/2
]2

r dr

� ‖ũ′‖2

∫ 1

0

| ln(r)|r dr = 1
4
‖ũ′‖2.

Doing the same for ṽ and w̃ gives (4.9).
From (4.6), (4.8) and (4.9) we have, using Re(Rs) � 0,(

α2 + 3
4

− 3|αR|
)
‖ũ‖2 +

(
3
4

− 1
4
|αR|

)
‖ũ′‖2 � 2R2‖ f̃ ‖2.

The condition |αR| � 1/16 is more than enough to ensure that the term in parentheses
on the left-hand side is positive, and the lemma follows.

In order to obtain a resolvent bound when the azimuthal wavenumber, n, is
sufficiently large, we consider a well-known reformulation of the problem. This
formulation is obtained by eliminating the pressure and formulating equations for the
radial velocity, ṽ, and the radial vorticity, η̃ (Burridge & Drazin 1969). The resulting
equations are

1

R
T2Φ − (iαU + s)TΦ + k2iαr

(
U ′

k2r

)′

Φ − 2αn

R
TΩ = −Tξ, (4.10a)

1

R
SΩ − (iαU + s)Ω +

2αn

Rk4r4
TΦ +

inU ′

k2r3
Φ = −χ. (4.10b)

Here, the prime denotes differentiation with respect to r , k2 =α2 + n2/r2 and

Φ = −irṽ, Ω =
αrw̃ − nũ

k2r2
=

−η̃

ik2r
,

ξ = −irf̃ r , χ =
αrf̃ θ − nf̃ x

k2r2
,

T = k2r
∂

∂r

(
1

k2r

∂

∂r

)
− k2, S =

1

k2r3

∂

∂r

(
k2r3 ∂

∂r

)
− k2. (4.11a,b)
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The corresponding boundary conditions are given by (see e.g. Schmid & Henningson
2001),

r = 1: Φ = Φ ′ = Ω = 0,

r = 0, n = 0: Φ = Φ ′ = 0,

r = 0, |n| = 1: Φ = Ω = 0, Φ ′ finite,
r = 0, |n| � 2: Φ = Φ ′ = Ω = 0.

⎫⎪⎬
⎪⎭ (4.12)

The two variables Φ and Ω completely describe the system. The original variables
can be recovered from

ũ = − α

k2r
Φ ′ − nΩ, ṽ =

iΦ

r
, w̃ = − n

k2r2
Φ ′ + αrΩ.

Hence, the L2-norm can be computed as

‖ũ‖2 = ‖r−1Φ‖2 + ‖k−1r−1Φ ′‖2 + ‖krΩ‖2, (4.13)

and similarly, ‖ f̃ ‖2 can be computed as ‖ f̃ ‖2 = ‖r−1ξ‖2 + ‖k−1r−1ξ ′‖2 + ‖krχ‖2.
Using (4.10a, b), we obtain the following lemma.

Lemma 4.3. For all α, n and R such that

n2 � 16|αR|,
the bound

‖R̃(s, α, n)‖ � CR2

holds in the entire unstable half-plane, Re(s) � 0. Here, C is a constant independent of
α, n and R. Also, for any fixed α and R, ‖R̃(s, α, n)‖ → 0 as |n| → ∞.

Proof. The rather lengthy proof is given in the Appendix.

4.3. The relation between the original problem and the Fourier transformed problems

Here, we discuss how the bounds on ‖R̂(s, α)‖ and ‖R̃(s, α, n)‖ can be used to derive
a bound on ‖R(s)‖. The arguments closely follow those used by Liefvendahl & Kreiss
(2003). We start by proving the following theorem.

Theorem 4.2. For all α, n and R such that at least one of the inequalities

|αR| � 1
16

, |α|3 � 4|αR|, n2 � 16|αR| (4.14a–c)

hold, there is a constant C, independent of α, n, R and Re(s) � 0, such that

‖R̃(s, α, n)‖ � CR2. (4.15)

Also, ‖R̃(s, α, n)‖ → 0 as |α| + |n| → ∞.

Proof. Lemma 4.3 gives (4.15) when (4.14c) holds. Also, using lemma 4.3 when
n 
= 0 and lemma 4.2 when n= 0 yields (4.15) when (4.14a) holds. Proving that
lemma 4.1 is also valid for R̃(s, α, n) for any value of n will give (4.15) when (4.14b)
holds, and will thus be the equivalent of proving the theorem.

When we derived lemma 4.1, we used the linearized Navier–Stokes equations in
Cartesian coordinates, Fourier transformed in the axial direction. Clearly, the L2-

norm over the unit disk of û and f̂ is the same when using cylindrical coordinates as

when using Cartesian coordinates. Hence, we may assume that R̂(s, α) in lemma 4.1
is the solution operator of the once Fourier transformed problem given in cylindrical
coordinates.
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In order to prove that lemma 4.1 also holds for R̃(s, α, n), we require Parseval’s
formula, given in this case by

‖û‖2 =

∫ 2π

0

∫ 1

0

|û(r, α, θ)|2r dr dθ = 2π
∞∑

n=−∞

∫ 1

0

|ũ(r, α, n)|2r dr = 2π
∞∑

n=−∞
‖ũ‖2.

Assume that lemma 4.1 does not hold for R̃(s, α, n) for all n. This means that there
exists an α∗ with |α∗| > 2

√
R, an n∗ and a forcing f̃ ∗(r) with ‖ f̃ ∗‖ = 1 such that

‖R̃(s, α∗, n∗) f̃ ∗‖ > 1. (4.16)

Denote by ũ∗(r) the corresponding solution. Now, consider the inverse transform of
f̃ ∗(r), i.e. the forcing

f̂ ∗(r, θ) = f̃ ∗(r) exp(in∗θ)

with corresponding solution û∗(r, θ). Using Parseval’s formula and (4.16), we then
have

‖û∗‖2 = 2π
∞∑

n=−∞
‖ũ∗‖2 = 2π‖R̃(s, α∗, n∗) f̃ ∗‖2 > 2π.

Since ‖ f̂ ∗‖ = 2π, this would imply ‖R̂(s, α∗)‖ > 1, i.e. that lemma 4.1 does not hold

for R̂(s, α) either. Hence, the bound (4.2) of lemma 4.1 holds also for R̃(s, α, n) for
all values of n.

The proof that ‖R̃(s, α, n)‖ → 0 as |α| → ∞ is almost identical. From (4.3), we have

‖R̂(s, α)‖ � (2α2 − 7R)−1R. By the same arguments as above, this bound also holds
for ‖R̃(s, α, n)‖ for all n. Hence, it follows that ‖R̃(s, α, n)‖ → 0 as |α| → ∞ for all
values of n. This proves that lemma 4.1 holds also for R̃(s, α, n) for all values of n

and theorem 4.2 is thus proved.

Next, we show that R̃(s, α, n) is related to R(s) by the following relation

‖R(s)‖ = max
α,n

‖R̃(s, α, n)‖. (4.17)

Note that ‖·‖ on the left-hand side denotes the L2-norm over the entire three-
dimensional domain (2.1) and on the right-hand side denotes the norm induced by
the scalar product (4.5).

The proof of (4.17) is straightforward. Note that in the proof of theorem 4.2, we
actually proved

‖R̂(s, α)‖ � max
n

‖R̃(s, α, n)‖. (4.18)

Here, we have used max instead of sup since ‖R̃(s, α, n)‖ → 0 as |n| → ∞ by lemma 4.3,
i.e. ‖R̃(s, α, n)‖ attains a maximal value with respect to n. The opposite inequality of
(4.18) follows from

‖ũ‖2 = ‖R̃(s, α, n) f̃ ‖2 �
(
max

n
‖R̃(s, α, n)‖

)2

‖ f̃ ‖2.

Using this with Parseval’s formula gives ‖R̂(s, α)‖ � maxn ‖R̃(s, α, n)‖, and we thus
have

‖R̂(s, α)‖ = max
n

‖R̃(s, α, n)‖.
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In order to prove (4.17), we must now prove

‖R(s)‖ = max
α

‖R̂(s, α)‖. (4.19)

For this, we require ‖R̂(s, α)‖ → 0 as |α| → ∞, in order to ensure that ‖R̂(s, α)‖ attains
a maximal value with respect to α; but this follows from lemma 4.1. Now, the rest of
the proof is similar to the proof above, although some care must be taken because
α ∈ �, i.e. α does not only take integer values as n does. The proof of (4.19) was
done by Liefvendahl & Kreiss (2003) and (4.17) follows.

5. Relation between the resolvent and transient growth
For pipe Poiseuille flow, numerical computations concerning the energy of an initial

perturbation as a function of time have been done by e.g. Schmid & Henningson
(1994) and Meseguer & Trefethen (2003). The results show that a substantial initial
growth of energy is possible despite the stable eigenvalues. In this section, we relate
the norm of the resolvent to this transient growth of energy.

Consider the initial-value problem

ut = Lu, (5.1a)

u(0) = u0, (5.1b)

where L is a linear operator independent of time. If we denote the solution operator
of (5.1a–b) by etL, we have

u(t) = etLu0. (5.2)

Since ‖u(t)‖ � ‖etL‖ ‖u0‖, we may use ‖etL‖ as a measure of the largest possible
growth (in the norm used) as a function of time. In hydrodynamic stability, the
L2-norm is typically used, since the square of the L2-norm can be interpreted as an
energy.

Assume that the spectrum of L is in the left half-plane, i.e. limt → ∞ ‖u(t)‖ = 0.
Clearly, this implies limt → ∞ ‖etL‖ = 0. Now, if L is a normal operator, we have
‖etL‖ � 1, ∀t � 0. This means that no growth of the norm of the solution is possible
for any initial data, u0. However, if L is non-normal, the norm of the solution can
experience an initial growth, i.e. ‖etL‖ > 1 for some times t > 0, before eventually
decaying.

In order to derive a relation between the resolvent and the solution operator, etL,
we apply the Laplace transform to (5.1a). The solution can then be written as

ũ(s) = (sI − L)−1u0 ≡ R(s)u0, (5.3)

where I is the identity operator and R(s) = (sI − L)−1 is the resolvent of L.
Applying the Laplace transform to (5.2) and comparing with (5.3), we find from

the definition of the Laplace transform that

R(s) =

∫ ∞

0

e−stetL dt. (5.4)

If ‖etL‖ is large, one also expects the norm of the resolvent to be large. Note that
the resolvent integrates the effects of transient growth over time. Thus, the norm of
the resolvent can be significantly larger than ‖etL‖.

The effects of transient growth can be illustrated by a simple example taken from
Schmid & Henningson (1994), and we refer to this paper for further details. Consider
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the 2 × 2 model problem (5.1) for u = (u, v)T and L given by

L =

(
−1/R 0

1 −2/R

)
. (5.5)

Clearly, the eigenvalues of L are in the left-hand half-plane for all R > 0. The
solution operator of this model problem is

etL =

(
e−t/R 0

−
(
e−2t/R − e−t/R

)
R e−2t/R

)
.

From this, we see that supt�0 ‖etL‖ ∼ R and that the maximum is attained at a time
t ∼ R. Hence, we expect the norm of the resolvent to be proportional to R2.

The resolvent of (5.5) is given by

R(s) = (sI − L)−1 =

⎛
⎜⎜⎝

R

sR + 1
0

R2

(sR + 1)(sR + 2)

R

sR + 2

⎞
⎟⎟⎠ . (5.6)

It follows that ‖R(0)‖ ∼ R2, which is what we expected from ‖etL‖.
For pipe Poiseuille flow, numerical computations by Schmid & Henningson (1994)

indicate that a perturbation with α =0 and n=1 gives the largest transient growth.
For this perturbation, the numerical results of both Schmid & Henningson (1994)
and Meseguer & Trefethen (2003) are

sup
t>0

‖etL‖L2 ∼ R,

with the maximum occurring at a time t ∼ R. We may thus expect the L2-norm of
the resolvent (at least at s = 0) to be proportional to R2, which is confirmed by the
extensive numerical computations of Meseguer & Trefethen (2003). Thus, it is likely
that for this perturbation, i.e. for α = 0 and n= 1, our resolvent bound in theorem 4.2
is sharp.

For further results relating the transient growth to the ε-pseudospectrum and the
resolvent, see Reddy, Schmid & Henningson (1993) and Trefethen et al. (1993).

6. Discussion
In § 4, we derived bounds on the resolvent for certain combinations of the

wavenumbers and the Reynolds number. We also showed how these results can
be used to give a bound on the resolvent of the original problem by using (4.17).
Here, we discuss what further results are required to obtain a rigorous bound on the
resolvent in the entire unstable half-plane.

By theorem 3.1, we already have a bound on the resolvent when s ∈ Σ . In the
remaining part of the unstable half-plane, Σ− defined by (3.1b), we would like to use
(4.17) to obtain a bound.

The resolvent of the Fourier transformed problem depends on four parameters, α,
n, R and s. For convenience, we choose instead the parameters α, n, αR and sR. We
would thus like to bound ‖R̃(s, α, n)‖ in the parameter domain

Υ = {α, αR ∈ �, n ∈ � , sR ∈ �}.
The bound should be valid at least for all s ∈ Σ−, i.e. we may assume Re(s) � 7,
|s| � CR etc. if needed.
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Deriving an analytical bound on the resolvent in the entire parameter domain, Υ ,
would probably be extremely complicated. Instead, assume that for s ∈ Σ−, we could
prove that there is some large constant C such that ‖R̃(s, α, n)‖ is bounded when

|sR| + |αR| � C2. (6.1)

Using theorem 4.2, it would be sufficient if the proof were valid for |α|3 � 4|αR|.
Since, by theorem 4.2, we already have a bound when |αR| � n2/16, this would

imply a bound also when |n| � 4C for all values of α, αR and sR. Also, since we
assume R � 1, (6.1) holds when |α| � C2. Hence, in order to cover the entire parameter
domain, Υ , it would be sufficient to obtain bounds in the parameter domain

Υ − = {|α| ∈ [0, C2], |αR| ∈ [1/16, C2], |n| ∈ [0, 4C] ∩ �, |sR| ∈ [0, C2]}.

This is a bounded parameter domain which opens for the possibility of using rigorous
numerical computations to cover it. These computations would have to be combined
with analytical results, since Υ − still contains an infinite number of parameter values.

The analytical results should be such that if a numerical bound on the resolvent
is valid at a point (α∗, αR∗, n∗, sR∗) ∈ Υ −, a bound follows in some neighbourhood
of this point. That is, given the numerical bound, an analytical bound follows for
all combinations of α, αR, n and sR such that g(α, αR, n, sR) � ε, where g is a
continuous function with g(α∗, αR∗, n∗, sR∗) = 0. The value of ε could depend on the
point chosen, but should be explicitly computable. Also, note that all computations
would have to be done with rigorous numerical methods using interval arithmetic.

For plane Couette flow, a resolvent bound has been derived under a condition
similar to (6.1) at the point s = 0 (Åsén & Kreiss 2005). The remaining parameter
domain is bounded. Analytical results of the type described above were derived by
Åsén (2005), making it possible to prove a rigorous bound on the resolvent at the
point s = 0 in the unstable half-plane.

Remark. Numerical computations by Schmid & Henningson (1994) indicate that
when n 
= 0, the transient growth decreases with increasing αR. Also, computations
by Meseguer & Trefethen (2003) suggest that the resolvent is maximized at s =0.
This indicates that a resolvent bound could be derived analytically when (6.1) holds,
if C is chosen large enough.

Remark 2. The results derived in this paper can easily be improved; Σ− can be
made smaller and theorem 4.2 can cover a larger parameter domain. In order to keep
the technicalities at a minimum, we have not aimed at making the results as sharp as
possible. However, if the desired analytical results discussed in this section are derived
and rigorous numerical computations are to be used in a bounded parameter domain,
making the results as sharp as possible could be important in order to reduce the
amount of computation required.

7. Conclusions
In this paper, we derive bounds on the resolvent of pipe Poiseuille flow. In a

large part of the unstable half-plane, a bound is obtained by using integration by
parts, see theorem 3.1. However, the size of the remaining part increases with incre-
asing Reynolds number. Also, the theorem does not cover the point s =0, which is
where numerical computations indicate that the resolvent is maximized (Meseguer &
Trefethen 2003).
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In order to obtain a bound on the resolvent in the remaining part of the unstable
half-plane, we consider the linearized Navier–Stokes equations, Fourier transformed
in the axial and azimuthal directions. We show, as was done by Liefvendahl &
Kreiss (2003), that the norm of the resolvent of the original problem is obtained
by maximizing the norm of the resolvent of the Fourier transformed problem with
respect to the two wavenumbers, α and n.

We derive bounds on the norm of the resolvent for different combinations of
the axial wavenumber, α, the azimuthal wavenumber, n, and the Reynolds number,
R. The results are presented in theorem 4.2. In particular, the theorem is valid for
perturbations with α = 0 and n= 1, which from numerical computations is believed
to yield the largest transient growth (Schmid & Henningson 1994) and the largest
resolvent (Trefethen et al. 1999). Also, our resolvent bound, ‖R̃(s, α, n)‖ � CR2, has
the same dependence on the Reynolds number as the results from the numerical
computations.

The conditions (4.14a–c) of theorem 4.2 include perturbations of different physical
properties. For instance, structures with weak streamwise dependency are covered by
(4.14a) or (4.14c). The velocity field of the perturbation that gives the largest transient
growth, determined by Schmid & Henningson (1994), is of this type. It consists of
two counter-rotating vortices near the centre of the pipe. Further, (4.14b) is valid for
perturbations with large axial wavenumber compared to the Reynolds number, i.e.
for perturbations which are severely affected by viscosity.

The remaining parameter domain for α, n, R and s is still unbounded. We briefly
discuss what further results are required in order to obtain a bounded parameter
domain. Under the conditions for deriving such a result, we also discuss how rigorous
numerical computations could be used to obtain a bound on the resolvent in the
remaining bounded parameter domain. This would result in a bound on the resolvent
in the entire unstable half-plane, which would also serve as the first proof of linear
stability of pipe Poiseuille flow.

Part of this work was done while visiting Professor Peter Schmid at the University
of Washington, Seattle, USA, and we are thankful for his help and comments on the
subject. The work was supported by Swedish Research Council grant 2003-5443.

Appendix. Proof of lemma 4.3
We will use (4.10a,b) and integration by parts to prove lemma 4.3. More precisely,

we will show that there is a constant C independent of α, n and R, such that

‖r−1Φ‖2 + ‖k−1r−1Φ ′‖2 + ‖krΩ‖2 �
CR4

n2
(‖r−1ξ‖2 + ‖k−1r−1ξ ′‖2 + ‖krχ‖2) (A 1)

holds when n2 � 16|αR|. Here, ‖ · ‖ is the norm induced by the scalar product
(4.5). The bound ‖R̃(s, α, n)‖ � CR2 then follows from (4.13). Also, this proves that
‖R̃(s, α, n)‖ → 0 as |n| → ∞ and the lemma is proved.

When n= 0, the lemma is valid only for α = 0. In this case, lemma 4.2 gives the
desired resolvent bound. Thus, we assume |n| � 1 in the remainder of the proof.

We use a prime to denote differentiation with respect to r . Although we use only
integration by parts, the r appearing in the scalar product (4.5) makes the proof
somewhat technical. Also, since r appears in the denominator at several places in the
equations, the boundary terms appearing from using integration by parts must be
handled with care.
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First, we multiply (4.10a) with k−2r−2R, scalar multiply with Φ and take the real
part. Note that 〈

Φ,
k2iαrR

k2r2

(
U ′

k2r

)′

Φ

〉
∈ Im

and, using integration by parts and the boundary conditions (4.12),

Re

(
−

〈
Φ,

sR

k2r2
TΦ

〉)
= Re(sR)(‖r−1Φ‖2 + ‖k−1r−1Φ ′‖2).

Since Re(Rs) � 0, we thus have

Re

(〈
Φ,

1

k2r2
T2Φ

〉)
�

∣∣∣∣Re

(〈
Φ,

iαUR

k2r2
TΦ

〉)∣∣∣∣
+

∣∣∣∣Re

(〈
Φ,

2αn

k2r2
TΩ

〉)∣∣∣∣ +

∣∣∣∣Re

(〈
Φ,

R

k2r2
Tξ

〉)∣∣∣∣ . (A 2)

Using integration by parts, we will derive a lower bound on the term on the left-hand
side of (A 2) and upper bounds on the terms on the right-hand side of (A 2). Using
the definition of T (4.11a), we have〈

Φ,
1

k2r2
T2Φ

〉
=

∫ 1

0

Φ

(
1

k2r
(TΦ)′

)′

dr −
〈

Φ,
1

r2
TΦ

〉
. (A 3)

The integral is rewritten, using integration by parts, as∫ 1

0

Φ

(
1

k2r
(TΦ)′

)′

dr =

[
Φ

1

k2r
(TΦ)′

]r=1

r=0

−
∫ 1

0

Φ
′ 1

k2r
(TΦ)′ dr

=

[
Φ

1

k2r
(TΦ)′ − Φ

′ 1

k2r
TΦ

]r=1

r=0

+

∫ 1

0

(
Φ

′′ 1

k2r
+ Φ

′
(

1

k2r

)′)
TΦ dr. (A 4)

From the definition of T, (4.11a), we have

1

kr
TΦ =

1

kr
Φ ′′ + k

(
1

k2r

)′

Φ ′ − k

r
Φ.

Using this, the integral on the right-hand side of (A 4) can be written as∫ 1

0

(
Φ

′′ 1

k2r
+ Φ

′
(

1

k2r

)′)
TΦ dr =

∫ 1

0

(
1

kr
TΦ +

k

r
Φ

)
1

kr
TΦr dr

= ‖k−1r−1TΦ‖2 +

〈
Φ,

1

r2
TΦ

〉
. (A 5)

It follows from (A 3), (A 4) and (A 5) that〈
Φ,

1

k2r2
T2Φ

〉
= ‖k−1r−1TΦ‖2 +

[
Φ

1

k2r
(TΦ)′ − Φ

′ 1

k2r
TΦ

]r=1

r=0

. (A 6)

We have kept the boundary terms which appear from using integration by parts,
since it is not obvious that they are zero or even that they are bounded. We will now
show that the boundary terms are zero.
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Expanding the boundary terms in (A 6) gives

Φ
1

k2r
(TΦ)′ − Φ

′ 1

k2r
TΦ =

2n2ΦΦ

k2r4
− ΦΦ ′

r
+

4n4ΦΦ ′

k6r7
− 6n2ΦΦ ′

k4r5
+

ΦΦ ′

k2r3

+
2n2ΦΦ ′′

k4r4
− ΦΦ ′′

k2r2
+

ΦΦ ′′′

k2r
+

Φ
′
Φ

r
− 2n2Φ

′
Φ ′

k4r4
+

Φ
′
Φ ′

k2r2
− Φ

′
Φ ′′

k2r
.

At r = 1 we have the boundary condition, (4.12), Φ = Φ ′ = 0 and all terms above are
thus zero at r = 1. At r =0, we have for |n| =1 that Φ = 0 and Φ ′ < ∞ and for |n| � 2
that Φ = Φ ′ = 0. Also, since n 
= 0, k−ar−b|r=0 is bounded if a = b and zero if a > b.
Hence, the remaining terms as r → 0 are

Φ
1

k2r
(TΦ)′ − Φ

′ 1

k2r
TΦ

∣∣∣∣
r→0

=
2n2ΦΦ

k2r4
− ΦΦ ′

r
+

4n4ΦΦ ′

k6r7
− 6n2ΦΦ ′

k4r5
+

ΦΦ ′

k2r3

+
Φ

′
Φ

r
− 2n2Φ

′
Φ ′

k4r4
+

Φ
′
Φ ′

k2r2

∣∣∣∣∣
r→0

. (A 7)

At r = 0 we have by l’Hospital’s rule and the boundary conditions that

Φ
′
Φ

r
− ΦΦ ′

r

∣∣∣∣∣
r→0

=
Φ

′′
Φ + Φ

′
Φ ′ − Φ

′
Φ ′ − ΦΦ ′′

1

∣∣∣∣∣
r→0

= 0. (A 8)

Again, using l’Hospital’s rule, k′ = − n2k−1r−3 and kara|r=0 = na , we have (below, we
assume r → 0 in all expressions)

2n2ΦΦ

k2r4
= 2n2 Φ

′
Φ + ΦΦ ′

4k2r3 − 2n2r
= 2n2 Φ

′′
Φ + 2Φ

′
Φ ′ + ΦΦ ′′

4(3k2r2 − 2n2) − 2n2
= 2Φ

′
Φ ′

∣∣∣
r=0

, (A 9a)

4n4ΦΦ ′

k6r7
= 4n4 Φ

′
Φ ′ + ΦΦ ′′

7k6r6 − 6n2k4r4
= 4

Φ
′
Φ ′

n2

∣∣∣∣∣
r=0

, (A 9b)

−6n2ΦΦ ′

k4r5
= −6n2 Φ

′
Φ ′ + ΦΦ ′′

5k4r4 − 4n2k2r2
= −6

Φ
′
Φ ′

n2

∣∣∣∣∣
r=0

, (A 9c)

ΦΦ ′

k2r3
=

Φ
′
Φ ′ + ΦΦ ′′

3k2r2 − 2n2
=

Φ
′
Φ ′

n2

∣∣∣∣∣
r=0

, (A 9d)

−2n2Φ
′
Φ ′

k4r4
= −2

Φ
′
Φ ′

n2

∣∣∣∣∣
r=0

, (A 9e)

Φ
′
Φ ′

r2k2
=

Φ
′
Φ ′

n2

∣∣∣∣∣
r=0

. (A 9f)

Hence, from (A 7), (A 8) and (A 9a–f ), it follows that

Φ
1

k2r
(TΦ)′ − Φ

′ 1

k2r
TΦ

∣∣∣∣
r→0

= 2

(
1 − 1

n2

)
Φ

′
Φ ′|r=0 = 0,

where in the last step we use 1 − n−2 = 0 if |n| =1 and Φ ′|r =0 = 0 if |n| � 2. We have
thus shown that the boundary terms in (A 6) are zero, and it follows that〈

Φ,
1

k2r2
T2Φ

〉
= ‖k−1r−1TΦ‖2. (A 10)
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We will now use integration by parts to derive an expression involving the desired
terms ‖r−1Φ‖ and ‖k−1r−1Φ ′‖ which appear on the left-hand side of (A 1). First, note
that since maxr∈[0,1] n

2/k2 � 1, we have

n2‖k−2r−1TΦ‖2 � ‖k−1r−1TΦ‖2. (A 11)

From the definition of T (4.11a), we have

‖k−2r−1TΦ‖2 =

∫ 1

0

((
1

k2r
Φ

′
)′

− 1

r
Φ

)((
1

k2r
Φ ′

)′

− 1

r
Φ

)
r dr

= ‖r−1Φ‖2 + ‖(k−2r−1Φ ′)′‖2

−
∫ 1

0

Φ

(
1

k2r
Φ ′

)′

dr −
∫ 1

0

Φ

(
1

k2r
Φ

′
)′

dr. (A 12)

Using integration by parts and the boundary conditions gives

−
∫ 1

0

Φ

(
1

k2r
Φ ′

)′

dr = −
[
Φ

1

k2r
Φ ′

]r=1

r=0

+

∫ 1

0

Φ
′ 1

k2r2
Φ ′r dr = ‖k−1r−1Φ ′‖2. (A 13)

Thus, using (A 10), (A 11), (A 12) and (A 13), we have the following lower bound on
the term on the left-hand side of (A 2).

Re

〈
Φ,

1

k2r2
T2Φ

〉
� n2

(
‖r−1Φ‖2 + 2‖k−1r−1Φ ′‖2 + ‖(k−2r−1Φ ′)′‖2

)
. (A 14)

For the first term on the right-hand side of (A 2), integration by parts yields〈
Φ,

iαU

k2r2
TΦ

〉
=

∫ 1

0

Φiα(1 − r2)

(
1

r

(
1

k2r
Φ ′

)′

− 1

r2
Φ

)
r dr

= iα(‖Φ‖2 − ‖r−1Φ‖2) +

[
Φiα(1 − r2)

1

k2r
Φ ′

]r=1

r=0

− iα

∫ 1

0

(
Φ

′
(1 − r2) − Φ2r

) 1

k2r
Φ ′ dr

= iα(‖Φ‖2 − ‖r−1Φ‖2 + ‖k−1Φ ′‖2 − ‖k−1r−1Φ ′‖2)

+ 2iα

∫ 1

0

Φ

r

Φ ′

kr

r

k
r dr.

Since maxr∈[0,1] r/k � 1/|n|, this gives∣∣∣∣Re

(〈
Φ,

iαUR

k2r2
TΦ

〉)∣∣∣∣ �
2|αR|

|n| ‖r−1Φ‖ ‖k−1r−1Φ ′‖. (A 15)

Similarly, using integration by parts, the following results for the other terms in
(A 2) are easily obtained∣∣∣∣Re

〈
Φ,

2αn

k2r2
TΩ

〉∣∣∣∣ �
2|α|
|n| (‖r−1Φ‖ ‖k2rΩ‖ + ‖k−1r−1Φ ′‖ ‖krΩ ′‖), (A 16a)∣∣∣∣Re

〈
Φ,

R

k2r2
Tξ

〉∣∣∣∣ � R(‖r−1Φ‖ ‖r−1ξ‖ + ‖k−1r−1Φ ′‖ ‖k−1r−1ξ ′‖). (A 16b)
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Hence, using (A 14), (A 15) and (A 16a,b) in (A 2) yields

n2(‖r−1Φ‖2 + 2‖k−1r−1Φ ′‖2) �
2|αR|

|n| ‖r−1Φ‖ ‖k−1r−1Φ ′‖

+
2|α|
|n| (‖r−1Φ‖ ‖k2rΩ‖ + ‖k−1r−1Φ ′‖ ‖krΩ ′‖)

+ R(‖r−1Φ‖ ‖r−1ξ‖ + ‖k−1r−1Φ ′‖ ‖k−1r−1ξ ′‖).

Using ab � a2/(2ε) + εb2/2, valid for ε > 0, on the right-hand side gives

n2(‖r−1Φ‖2 + 2‖k−1r−1Φ ′‖2) �
2|αR|
|n|3 n2

(
1
4
‖r−1Φ‖2 + ‖k−1r−1Φ ′‖2

)
+

n2

4
‖r−1Φ‖2

+
4α2

n4
‖k2rΩ‖2 +

n2

2
‖k−1r−1Φ ′‖2 +

2α2

n4
‖krΩ ′‖2

+
n2

8
(‖r−1Φ‖2 + ‖k−1r−1Φ ′‖2)

+
2R2

n2
(‖r−1ξ‖2 + ‖k−1r−1ξ ′‖2).

The condition n2 � 16|αR| (and |n| � 1) is more than enough to ensure that

n2(‖r−1Φ‖2 + 2‖k−1r−1Φ ′‖2) �
8α2

n4
‖k2rΩ‖2 +

4α2

n4
‖krΩ ′‖2

+
4R2

n2
(‖r−1ξ‖2 + ‖k−1r−1ξ ′‖2). (A 17)

We will now derive a similar result for Ω by using (4.10b). We multiply (4.10b) by
(−k2r2R), scalar multiply by Ω and take the real part. Since

〈Ω, iαURk2r2Ω〉 ∈ Im,

Re(〈Ω, sRk2r2Ω〉) = Re(sR)‖krΩ‖2,

and Re(Rs) � 0, this yields

−Re

(〈
Ω, k2r2SΩ

〉)
�

∣∣∣∣Re

(〈
Ω,

2αn

k2r2
TΦ

〉)∣∣∣∣
+

∣∣∣∣Re

(〈
Ω,

RinU ′

r
Φ

〉)∣∣∣∣ +
∣∣Re(〈Ω, k2r2Rχ〉)

∣∣ . (A 18)

For the term on the left-hand side of (A 18), using integration by parts and the
definition of S (4.11b) yields

−〈Ω, k2r2SΩ〉 = −
∫ 1

0

Ω

(
1

r
(k2r3Ω ′)′ − k4r2Ω

)
r dr = ‖k2rΩ‖2

−
[
Ωk2r3Ω ′]r=1

r=0
+

∫ 1

0

Ω
′
k2r2Ω ′r dr = ‖k2rΩ‖2 + ‖krΩ ′‖2. (A 19)

The terms on the right-hand side of (A 18) are easily bounded from above by∣∣∣∣Re

(〈
Ω,

2αn

k2r2
TΦ

〉)∣∣∣∣ �
2|α|
|n| (‖krΩ ′‖ ‖k−1r−1Φ ′‖ + ‖k2rΩ‖ ‖r−1Φ‖), (A 20a)∣∣∣∣Re

(〈
Ω,

RinU ′

r
Φ

〉)∣∣∣∣ � 2R‖krΩ‖ ‖r−1Φ‖, (A 20b)
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(〈
Ω, k2r2Rχ

〉)∣∣∣∣ � R‖krΩ‖ ‖krχ‖. (A 20c)

Using (A 19) and (A 20a–c) in (A 18) thus gives

‖k2rΩ‖2 + ‖krΩ ′‖2 �
2|α|
|n| (‖krΩ ′‖ ‖k−1r−1Φ ′‖ + ‖k2rΩ‖ ‖r−1Φ‖)

+ 2R‖krΩ‖ ‖r−1Φ‖ + R‖krΩ‖ ‖krχ‖.

As before, using ab � a2/(2ε) + εb2/2 on the right-hand side gives

‖k2rΩ‖2 + ‖krΩ ′‖2 � 1
4
‖krΩ ′‖2 +

4α2

n2
‖k−1r−1Φ ′‖2 + 1

8
‖k2rΩ‖2 +

8α2

n2
‖r−1Φ‖2

+ 1
2
‖krΩ‖2 + 2R2‖r−1Φ‖2 + 1

8
‖krΩ‖2 + 2R2‖krχ‖2.

Collecting terms and using ‖krΩ‖ � n2‖krΩ‖ � ‖k2rΩ‖ yields

‖k2rΩ‖2 + 3‖krΩ ′‖2 �
16α2

n2

(
‖k−1r−1Φ ′‖2 + 2‖r−1Φ‖2

)
+ 8R2‖r−1Φ‖2 + 8R2‖krχ‖2. (A 21)

From (A 17), we have

8R2‖r−1Φ‖2 �
64α2R2

n6
‖k2rΩ‖2 +

32α2R2

n6
‖krΩ ′‖2

+
32R4

n4
(‖r−1ξ‖2 + ‖k−1r−1ξ ′‖2). (A 22)

Using (A 22) on the right-hand side of (A 21) and adding the result to (A 17) gives
after rearranging the terms

n2

(
1 − 32α2

n4

)
‖r−1Φ‖2 + n2

(
2 − 16α2

n4

)
‖k−1r−1Φ ′‖2

+

(
1 − 8α2

n4
− 64α2R2

n6

)
‖k2rΩ‖2 +

(
3 − 4α2

n4
− 32α2R2

n6

)
‖krΩ ′‖2

� C(R4(‖r−1ξ‖2 + ‖k−1r−1ξ ′‖2) + R2‖krχ‖2).

The condition n2 � 16|αR| (and R � 1, i.e. n2 � 16|α|) is enough to ensure that the
term in parentheses on the left-hand side is positive. Using also n2‖krΩ‖2 � ‖k2rΩ‖2,
(A 1) follows and the lemma is proved.
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Åsén, P.-O. & Kreiss, G. 2005 On a rigorous resolvent estimate for plane Couette flow. J. Math.
Fluid Mech. Accepted.

Burridge, D. M. & Drazin, P. G. 1969 Comments on ‘Stability of pipe Poiseuille flow’. Phys.
Fluids 12, 264–265.

Chapman, S. J. 2002 Subcritical transition in channel flows. J. Fluid Mech. 451, 35–97.

Draad, A. A., Kuiken, G. D. C. & Nieuwstadt, F. T. M. 1998 Laminar–turbulent transition in
pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech. 377, 267–312.

Herron, I. H. 1991 Observations on the role of vorticity in the stability theory of wall bounded
flows. Stud. Appl. Maths 85, 269–286.



Resolvent bounds for pipe Poiseuille flow 471

Hof, B., Juel, A. & Mullin, T. 2003 Scaling of the turbulence transition threshold in a pipe. Phys.
Rev. Lett. 91 (24), 244502.

Kreiss, G., Lundbladh, A. & Henningson, D. S. 1994 Bounds for threshold amplitudes in
subcritical shear flows. J. Fluid Mech. 270, 175–198.

Lessen, M., Sadler, S. G. & Liu, T.-Y. 1968 Stability of pipe Poiseuille flow. Phys. Fluids 11,
1404–1409.

Liefvendahl, M. & Kreiss, G. 2003 Analytical and numerical investigation of the resolvent for
plane Couette flow. SIAM J. Appl. Maths 63, 801–817.
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